Beyond Liouvillian transcendence
نویسندگان
چکیده
منابع مشابه
Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients
Let L(y) = b be a linear differential equation with coefficients in a differential field K. We discuss the problem of deciding if such an equation has a non-zero solution in K and give a decision procedure in case K is an elementary extension of the field of rational functions or is an algebraic extension of a transcendental liouvillian extension of the field of rational functions. We show how ...
متن کاملDiffieties and Liouvillian Systems
Liouvillian systems were initially introduced in [3] and can be seen as a natural extension of differential flat systems. Many physical non flat systems seem to be Liouvillian (cf [12, 11, 1, 10]). We present in this paper an alternative definition to this class of systems using the language of diffieties and infinite prolongation theory.
متن کاملConvolutions of Liouvillian Sequences
While Liouvillian sequences are closed under many operations, simple examples show that they are not closed under convolution, and the same goes for d’Alembertian sequences. Nevertheless, we show that d’Alembertian sequences are closed under convolution with rationally d’Alembertian sequences, and that Liouvillian sequences are closed under convolution with rationally Liouvillian sequences.
متن کاملLiouvillian Integration and Bernoulli Foliations
Analytic foliations in the 2-dimensional complex projective space with algebraic invariant curves are studied when the holonomy groups of these curves are solvable. It is shown that such a condition leads to the existence of a Liouville type first integral, and, under “generic” extra conditions, it is proven that these foliations can be defined by Bernoulli equations.
متن کاملTranscendence in Positive Characteristic
1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 1999
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.1999.v6.n1.a3